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The solutions of a problem of the theory of elasticity for a wedge with homogeneous boundary 

conditions are obtained as combinations of McDonald functions. Displacement fields of waves 

propagating inside the wedge are determined, which have not so far been described in the literature. 

Starting from a physical argument, the displacement amplitudes are determined for reflected, refracted, 

and volume waves. These agree with experimental data. 

1. FORMULATION OF THE PROBLEM 

CONSIDER an unbounded wedge-shaped plate with flat surfaces (Fig. 1). The discussion of wave 
propagation begins with the following vector differential equation of motion of particles when there are 
no volume forces 

(1.1) 

where 1 and ).t are the Lame coefficients, U is the displacement vector, and pO is the density of the 
medium. 

We will express the displacement vector in the form [l] 

where the vector potential is expressed in terms of two scalar functions w, and wz, and where cp is the 
scalar potential and k denotes the unit vector along the z-axis. In this case one can succeed in separating 
the solution of the vector wave equation for each function w1 and v, 

A~+K,?~=Q, Awj+K,2Wj=O; j=1,2 (1.3) 

where K, and K, are the wave numbers of longitudinal and transverse waves, respectively. 
The boundary conditions have the form 

oep 2 a29 -_=-- 2 a9 1 awl a%, + 1. a% : 2 a% ---_+- 2 a% 
CL papa0 p2 a0 p ap ap* PA a@ papaea~ p2 ae2az 

6&=2 a29 a3w1 1 a3v, 1 a2Yl* 1 a%, a% ----__-__--_--- 
p p aeaz apaz p az2ae p apao ~2 a03 at3ap2 (1.4) 
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FIN. 1. 
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The conditions of the problem require that the stresses oep, crBr, o, should vanish for the wedge 
angles Q= 8, and 8 = -0,. 

2. PARTICULAR SOLUTION OF THE PROBLEM 

Consider the functions 

Q=(Uechv,e+ZJ,)shv,e)exp[i(pz-CO!)] 

Vi =(UjchV2e+bjshv29)exp[i(pz-cor)] (2.1) 

as solutions of (1.3). Here p is the wave number, v, and vz are the field characteristics connected with the 
wave numbers, and w is the angular frequency. Substituting these functions into (1.3), we obtain 

% = Ao&, (pa)+ BoI,, (pa). bo = C&, (pa)+ DoI”, (pa) (2.2) 

uj=AjKvz(PB)+BjZ,z(Pa), bj=CjK,,(PS)+DjZ”,(PB) 

01= Jm, p=,/w 

where Z”, and Kv, are the modified Bessel functions of the first and second kind. Using the asymptotic 
forms of cylindrical functions [2] and the radiation condition 

Kc,(s)- exp(s), npri s + 00, Ia@< t 

it can be shown that BiD,, = Di = 0. 

Substituting (2.1) into the boundary conditions (1.4) and equating the stresses to zero, we obtain a 
system of six equations with unknowns A,, A,, 4, B,,, B,, B,. The solution of this system enables us to 
determine the types of waves propagating in a wedge-shaped plate. The non-zero solution of this system is 
of interest. A condition for the existence of such a solution is that the determinant of the system should be 
equal to zero. 

Consider plane waves independent of z by virtue of symmetry. The sixth-order determinant can be 
reduced to the product of three second-order determinants corresponding to three independent families 
of displacement components. 
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Solution 1 

4, Co, A,, C,=O, A2, C2f0, up=&=0 

U, = [(vi / p - 1/ p)Kv2 (iK,p) - K& (iK,p)l[A2 ch v,0 + C, sh ~$31 

Solution 2 

A,, Co, A2, C, =0, Ao, Cl #Co, U2 =0 

c/e = A@-$K,, (iK,p)shvtt3-CtK& (iK,p)shv$ 

U, = AoK;, (iKlp)chvtO+CIp-lvZKVZ (iK,p)chv# 

Solution 3 

&I. c,, 4, C,=O. A,. C,+O, Uz =O 

Up =A#-‘vzK,, (iK,p)shv#+CoKi, (iK,p)shvte 

Ue = -AtG, (iK,p)chvzO+Cop-‘vt K,, (iK,p)chv,e 

(the derivative with respect to p is denoted by a prime). 

In Solution 1 the displacements of particles are perpendicular to the direction of wave propagation. 
Therefore, the solution corresponds to transverse waves, in which the displacements of the particles of the 

medium are parallel to the boundary surfaces. The wave motions of particles corresponding to the other 
two solutions have a complex form. In these solutions two displacement components are non-zero and 
the superposition of wave motions involves a combination of longitudinal and transverse motions. In 
Solution 2 the particle displacement vector is symmetric with respect to O=O, i.e. with respect to the 
middle plane passing through the bisectrix of the wedge angle. 

In Solution 3 the displacement vector is antisymmetric with respect to the middle plane. We will 

consider the equations of symmetric and antisymmetric waves, which can be obtained by equating the two 

corresponding determinants to zero [3,4] 

K,’ -2(Kf I Kf -l)K,, (iK,p) 

K&K- 
Kc2 - 

h 

K,‘. = K I VI ._*(iK,p)fKvj+2(iKlp) 
(2.3) 

(K = 1 for symmetric waves, and K = -1 for antisymmetric ones). We express the McDonald functions in 
these equations in terms of Hankel functions of the first and second kind [2]. To estimate the resulting 
equations, we apply the Langer formula [2], which, for any v+l, give asymptotic representations uniform 

over the interval 0 < x < 00 

(o=&x2/v2, k=o-‘Arthw-1) 

The dependence of the velocity and damping on the distance to the edge of the wedge for various 
wedge angles obtained from the solutions of (2.3) is presented in Figs 2 and 3. Curves l-6 correspond to 
the angles 0.039,0.05,0.1,0.1,0.05,0.039, C is the wave velocity in the wedge-shaped plate, and C, is the 
Rayleigh wave velocity. 

Analysis indicates that the curves characterize waves which have not been described so far. The 
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comparison of these waves with those propagating in a plane-parallel plate reveals the following. 
In a wedge-shaped plate, as opposed to a plane-parallel one, there are two types of propagating waves 

in which the particles move in a plane perpendicular to the surface. For one of these types, the particles 

move symmetrically relative to the plane passing through the bisectrix of the angle of the wedge, while, 
for the other type, they move antisymmetrically relative to the plane. 

If the velocity of a supersonic wave in a plane-parallel plate is constant for a given thickness, it varies 
monotonically in a wedge-shaped plate, namely, the velocity of one of the waves increases towards the 

edge up to a certain value, while the velocity of the other wave decreases to zero. Away from the edge the 
velocities of both wave types tend to the velocity of a Rayleigh wave. 

The nature of wave propagation in a wedge-shaped plate differs from that in a plane-parallel plate. 

Waves in which the displacements of particles are antisymmetric relative to the plane of symmetry of the 
wedge reach the edge of the wedge, while waves of the other type do not reach the edge. The length of 
this “plug” depends on the wavelength h 

I= 0.76hctgB (2.4) 

FIG. 2. 
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FIG. 3. 
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3. THE COMPLETE SOLUTION OF THE PROBLEM 

The wave field in a wedge consists of reflected surface waves, refracted surface waves, and volume 

waves. For the amplitudes of such waves to be determined, an additional restriction is necessary, such as 
the following condition on the edge, which represents the law of conservation of energy [5] 

l.J=C+O(r”) 

where r is the distance between the current point and the edge of the wedge, and E is a positive number. 
The condition turns out to be too weak to determine the three kinds of waves. We therefore determine 

the amplitudes from a physical argument followed by the verification of the law of conservation of energy. 
A Rayleigh wave propagates far away from the edge which is a set of compression-expansion waves 

and translation waves characterized by the wave vectors K, and K,. As the wave approaches the edge, it 
splits into two waves, the velocities of which vary in different ways (Fig. 2). The phase shift between the 

wave vectors of these waves arising in the vicinity of the edge determines the amplitudes of the reflected 
and refracted surface waves as well as the volume wave. The volume wave is formed as one moves away 
from the edge and is caused by the increasing velocity of the reflected wave near the surface of the wedge. 
Moreover, the wave front tears apart and breaks away from the surface. A similar effect occurs when a 
Rayleigh wave crosses a curved surface. For the waves in question, Fig. 4 shows the dependence of the 

phase shifts between K, and K, on the angle of the wedge. Functions 1, 2, and 3 correspond to the 
refracted, reflected, and volume waves. 

For the refracted surface wave, the phase shift between the wave vectors K, and K, appears when the 

angle of the wedge reaches 175”. This is connected with the fact that, in a Rayleigh wave, K, is directed at 
an imaginary angle to the surface of the wedge, and, starting from an angle of incidence of 85”, the angle 

between K, and the other face of the wedge is twice as large. The wave vector of the longitudinal wave 
has variable direction and is connected with the peculiar nature of the propagation of this wave inside the 

wedge. The “plug” near the edge of the wedge displaces the particles of the medium only in one direction, 
namely, in the direction of wave motion. As the angle of the wedge decreases, the length of the plug 
increases, and, for certain angles, the direction of K, reverses. These angles can be determined from (2.4): 
tg8 = 0.76K, where K = 0.5, 1.0, 1.5,2.0. It follows that cp = 28 = 133”, 74”, .54”, 42”. 

FIO .4. 
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For these wedge angles, the phase shift between K, and K, undetgoes jump-like changes. For wedge 
angles between 175’ and 74”, the phase shift is due to the rotation of K, and is determined by the 
principles of geometrical acoustics. For smaller wedge angles, the domain of variation of the wave 
velocities increases (Fig. 2) and the phase shift between K, and K, is essentially determined by the 
difference between the velocities of the longitudinal and transverse waves. For wedge angles between 103” 

and 93”, the geometric rotation of K, is insignificant and comparable with the rotation of this vector 
connected with the increase in the velocity of the transverse wave. Since these shifts compensate one 

another, the difference between the phases of K, and K, is constant in the interval in question. As the 
angle of the wedge decreases further, the variation of the phase of K, due to geometric rotation near 90” 
first decreases, and then increases to become greater than the phase shift caused by the decreasing 
velocity of the surface wave. This gives rise to phase shift oscillations in the range of wedge angles 
between 96O and 85”. 

For wedge angles between 180” and 135” the phase shift between K, and K, is caused by the difference 
between the velocities of the longitudinal and transverse waves. Since the angle of incidence of the 

transverse wave on the other face of the wedge exceeds 45”, the wave is totally reflected. For wedge angles 
smaller than 13S’, there is an additional change in the direction of K, due to geometric reflection. As the 
angle of the wedge decreases further below 90”, the variation of the phase shift is caused essentially by the 

increasing velocity of the transverse wave. The oscillations of the phase shift and the constant phase shift 

at certain wedge angles are due to the same reasons as in the case of the refracted wave. 

The variation of the phase shift between the wave vectors K, and K,, as the volume wave is formed, is 

related to the variation of the phase shift for the reflected wave. 
For sufficiently small wedge angles the difference between the velocities of longitudinal and transverse 

waves increases, which causes the period of phase shift oscillations to decrease. 
In Fig. 5 we show curves of the amplitudes of the reflected, refracted, and volume waves against the 

angle of the wedge. In Fig. 5 we also present experimental values of the amplitudes of the reflected waves 
(the solid circles) and refracted waves (the hollow circles) obtained for duralumin samples [6]. 

A 

! h , 

735 cp, grad 

FIG. 6. 
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In Fig. 6 we present the results of a numerical computation of the function K equal to the sum of the 

squares of the amplitudes of the reflected, refracted, and volume waves for an incident Rayleigh wave of 
normalized amplitude. The fact that the values of the function (which are close to one) are in good 
agreement with the normalized amplitude of the Rayleigh wave indicates that the law of conservation of 
energy is satisfied. 
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